La termodinamica puede definirse como el tema de la Física que estudia los procesos en los que se transfiere energía como calor y como trabajo.
Sabemos que se efectúa trabajo cuando la energía se transfiere de un cuerpo a otro por medios mecánicos. El calor es una transferencia de energía de un cuerpo a un segundo cuerpo que está a menor temperatura. O sea, el calor es muy semejante al trabajo.
es imprescindible establecer una clara distinción entre tres conceptos básicos: temperatura, calor y energía interna.
La temperatura es una medida de la energía cinética media de las moléculas individuales. El calor es una transferencia de energía, como energía térmica, de un objeto a otro debida a una diferencia de temperatura.
La energía interna (o térmica) es la energía total de todas las moléculas del objeto, o sea incluye energía cinética de traslación, rotación y vibración de las moléculas, energía potencial en moléculas y energía potencial entre moléculas. Para mayor claridad, imaginemos dos barras calientes de un mismo material de igual masa y temperatura. Entre las dos tienen el doble de la energía interna respecto de una sola barra. Notemos que el flujo de calor entre dos objetos depende de sus temperaturas y no de cuánta energía térmica o interna tiene cada uno. El flujo de calor es siempre desde el objeto a mayor temperatura hacia el objeto a menor temperatura.
Primera Ley de la Termodinamica
Esta ley se expresa como:
Eint = Q - W
Segunda Ley de la Termodinamica
En la naturaleza hay procesos que suceden, pero cuyos procesos inversos no. Esta ley tiene dos enunciados principales:
Enunciado de Kelvin - Planck : Es imposible construir una máquina térmica que, operando en un ciclo, no produzca otro efecto que la absorción de energía desde un depósito y la realización de una cantidad igual de trabajo.
Enunciado de Clausius: Es imposible construir una máquina cíclica cuyo único efecto sea la transferencia continua de energía de un objeto a otro de mayor temperatura sin la entrada de energía por trabajo.
Tercera Ley de la Termodinámica.
La tercera ley tiene varios enunciados equivalentes:
"No se puede llegar al cero absoluto mediante una serie finita de procesos"
"La entropía de cualquier sustancia pura en equilibrio termodinámico tiende a cero a medida que la temperatura tiende a cero".
"La primera y la segunda ley de la termodinámica se pueden aplicar hasta el límite del cero absoluto, siempre y cuando en este límite las variaciones de entropía sean nulas para todo proceso reversible".
La termodinamica se divide en varios tipos de procesos, como:
- Los Isotérmicos
- Los Isocoricos
Proceso Isotérmico:
Proceso isotérmico es el cambio de temperatura reversible en un sistema termodinámico, siendo dicho cambio de temperatura constante en todo el sistema. La compresión o expansión de un gas ideal en contacto permanente con un termostato es un ejemplo de proceso isotermo, y puede llevarse a cabo colocando el gas en contacto térmico con otro sistema de capacidad calorífica muy grande y a la misma temperatura que el gas; este otro sistema se conoce como foco caliente. De esta manera, el calor se transfiere muy lentamente, permitiendo que el gas se expanda realizando trabajo. Como la energía interna de un gas ideal sólo depende de la temperatura y ésta permanece constante en la expansión isoterma, el calor tomado del foco es igual al trabajo realizado por el gas: Q = W. Una curva isoterma es una línea que sobre un diagrama representa los valores sucesivos de las diversas variables de un sistema en un proceso isotermo. Las isotermas de un gas ideal en un diagrama P-V, llamado diagrama de Clapeyron, son hipérbolas equiláteras, cuya ecuación es P•V = constante.
Proceso isotérmico: Comprime el gas lentamente, controlando que en todos los casos la temperatura permanezca lo más constante posible. · Grafique los valores de P versus V y (P.V) versus V. · Compare sus resultados con los que predice la ley de Boyle.
PROCESO ISOTÉRMICO: En este proceso la temperatura permanece constante. Como la energía interna de una gas ideal sólo es función de la temperatura, en un proceso isotérmico de un gas ideal la variación de la energía interna es cero (∆U= 0) La curva hiperbólica se conoce como isotérmica. TRABAJO ISOTÉRMICO: El problema pide que se determine el trabajo de un proceso cuasiestático isotermo en el que se dobla la presión
Para un gas ideal en un proceso isotérmico se cumple que: ∆U(T) = ∆H(T)=0 el calor y el trabajo (que son iguales) se pueden calcular: Q = W = n·R·T·Ln (V₂/V₁) = P₁V₁·Ln (P₁/P₂)
A continuacion se presenta una simulacion, con la cual se podra apreciar de una forma facil e interactiva la forma en la qe funciona el proceso isotermico.
Procesos Isocoricos:
Un proceso isocórico, también llamado proceso isométrico o isovolumétrico es un proceso termodinámico en el cual el volumen permanece constante; ΔV = 0. Esto implica que el proceso no realiza trabajo presión-volumen, ya que éste se define como:
ΔW = PΔV,
donde P es la presión (el trabajo es positivo, ya que es ejercido por el sistema).
Aplicando la primera ley de la termodinámica, podemos deducir que Q, el cambio de la energía interna del sistema es:
Q = ΔU
para un proceso isocórico: es decir, todo el calor que transfiramos al sistema quedará a su energía interna, U. Si la cantidad de gas permanece constante, entonces el incremento de energía será proporcional al incremento de temperatura,
Q = nCVΔT
donde CV es el calor específico molar a volumen constante.
En un diagrama P-V, un proceso isocórico aparece como una línea vertical. Desde el punto de vista de la termodinámica, estas transformaciones deben transcurrir desde un estado de equilibrio inicial a otro final; es decir, que las magnitudes que sufren una variación al pasar de un estado a otro deben estar perfectamente definidas en dichos estados inicial y final. De esta forma los procesos termodinámicos pueden ser interpretados como el resultado de la interacción de un sistema con otro tras ser eliminada alguna ligadura entre ellos, de forma que finalmente los sistemas se encuentren en equilibrio (mecánico, térmico y/o material) entre si.
De una manera menos abstracta, un proceso termodinámico puede ser visto como los cambios de un sistema, desde unas condiciones iniciales hasta otras condiciones finales, debidos a la desestabilización del sistema.
Ejemplo:
¿Cuando se incrementa la energia interna de 10g de hielo que esta a cero grados centigrados cuando se transforma en agua manteniendo el volumen constante?
como el proceso es isocorico, ya que no cambia el volumen, entonces w=0 y de acuerdo con la primera ley de la termodinamica la cantidad de calor ganado por el hielo es igual al cambio en su energia interna, es decir: Q= ΔU . Ahora bien, el calor de fusion del hielo es Q=mLf. en donde Lf=80cal/g.
sustituimos valores en la relacion anterior:
Q=(10g)(80cal/g)=800cal
por tanto, el cambio en la energía interna es:
ΔU=Q=800cal 4.19J/1cal=3352J
Esta imagen demuestra las gráficas representativas de algunos proceso isodinámicos.
Esta imagen demuestra las gráficas representativas de algunos proceso isodinámicos.